3,947 research outputs found

    Comment on ``Quantum Statistical Mechanics of an Ideal Gas with Fractional Exclusion Statistics in Arbitrary Dimension"

    Full text link
    It is mentioned that anyon thermodynamic potential Q(α,N)Q(\alpha, N) could not be factorized in terms characteristic of the ideal boson α=0\alpha =0 and fermion α=1\alpha =1 gases by the relation Q(α,N)=(1−α)Q(0,Nb)+αQ(1,Nf)Q(\alpha, N) = (1-\alpha) Q(0, N_b)+ \alpha Q(1, N_f) in which N=Nf+NbN=N_f +N_b, that claimed in Phys. Rev. Lett. 78, 3233 (1997). Our analyses indicate that the thermodynamic quantities of anyon gas may be factorized as Q(α)=αQ(1)+(1−α)Q(0)Q(\alpha) = \alpha Q(1) + (1-\alpha) Q(0) only in the two-dimension system

    Gravitational Radiation from a Naked Singularity -- Odd-Parity Perturbation --

    Get PDF
    It has been suggested that a naked singularity may be a good candidate for a strong gravitational wave burster. The naked singularity occurs in the generic collapse of an inhomogeneous dust ball. We study odd-parity mode of gravitational waves from a naked singularity of the Lema\^{\i}tre-Tolman-Bondi space-time. The wave equation for gravitational waves are solved by numerical integration using the single null coordinate. The result is that the naked singularity is not a strong source of the odd-parity gravitational radiation although the metric perturbation grows in the central region. Therefore, the Cauchy horizon in this space-time would be marginally stable against odd-parity perturbations.Comment: 14 pages, 7 figures, to be published in Prog. Theor. Phys. Final version, with minor changes. Reference 13 adde

    Development and validation of an advanced low-order panel method

    Get PDF
    A low-order potential-flow panel code, PMARC, for modeling complex three-dimensional geometries, is currently being developed at NASA Ames Research Center. The PMARC code was derived from a code named VSAERO that was developed for Ames Research Center by Analytical Methods, Inc. In addition to modeling potential flow over three-dimensional geometries, the present version of PMARC includes several advanced features such as an internal flow model, a simple jet wake model, and a time-stepping wake model. Data management within the code was optimized by the use of adjustable size arrays for rapidly changing the size capability of the code, reorganization of the output file and adopting a new plot file format. Preliminary versions of a geometry preprocessor and a geometry/aerodynamic data postprocessor are also available for use with PMARC. Several test cases are discussed to highlight the capabilities of the internal flow model, the jet wake model, and the time-stepping wake model

    Gravitational Radiation from a Naked Singularity. II - Even-Parity Perturbation -

    Full text link
    A naked singularity occurs in the generic collapse of an inhomogeneous dust ball. We study the even-parity mode of gravitational waves from a naked singularity of the Lema\^{\i}tre-Tolman-Bondi spacetime. The wave equations for gravitational waves are solved by numerical integration using the single null coordinate. The result implies that the metric perturbation grows when it approaches the Cauchy horizon and diverges there, although the naked singularity is not a strong source of even-parity gravitational radiation. Therefore, the Cauchy horizon in this spacetime should be unstable with respect to linear even-parity perturbations.Comment: 16 pages, 5 figures, errors and typos corrected, final versio

    Physical Processes in Naked Singularity Formation

    Get PDF
    Gravitational collapse is one of the most fruitful subjects in gravitational physics. It is well known that singularity formation is inevitable in complete gravitational collapse. It was conjectured that such a singularity should be hidden by horizons if it is formed from generic initial data with physically reasonable matter fields. Many possible counterexamples to this conjecture have been proposed over the past three decades, although none of them has proved to be sufficiently generic. In these examples, there appears a singularity that is not hidden by horizons. This singularity is called a `naked singularity.' The appearance of a naked singularity represents the formation of an observable high-curvature, strong-gravity region. In this paper we review examples of naked singularity formation and recent progress in research of observable physical processes - gravitational radiation and quantum particle creation - from a forming naked singularity.Comment: 76 pages, 25 figure file

    The thermodynamic limit for fractional exclusion statistics

    Full text link
    I discuss Haldane's concept of generalised exclusion statistics (Phys. Rev. Lett. {\bf 67}, 937, 1991) and I show that it leads to inconsistencies in the calculation of the particle distribution that maximizes the partition function. These inconsistencies appear when mutual exclusion statistics is manifested between different subspecies of particles in the system. In order to eliminate these inconsistencies, I introduce new mutual exclusion statistics parameters, which are proportional to the dimension of the Hilbert sub-space on which they act. These new definitions lead to properly defined particle distributions and thermodynamic properties. In another paper (arXiv:0710.0728) I show that fractional exclusion statistics manifested in general systems with interaction have these, physically consistent, statistics parameters.Comment: 8 page
    • …
    corecore